Описание стекла и экскурсия в историю

Стекло, твёрдый аморфный материал, полученный в процессе переохлаждения расплава. Для Стекла характерна обратимость перехода из жидкого состояния в метастабильное, неустойчивое стеклообразное состояние. При определённых температурных условиях кристаллизуется. Стекло не плавится при нагревании подобно кристаллическим телам, а размягчается, последовательно переходя из твёрдого состояния в пластическое, а затем в жидкое. По агрегатному состоянию стекло занимает промежуточное положение между жидким и кристаллическим веществами. Упругие свойства делают стекло сходным с твёрдыми кристаллическими телами, а отсутствие кристаллографической симметрии (и связанная с этим изотропность) приближает к жидким. Склонность к образованию стекла характерна для многих веществ (селен, сера, силикаты, бораты и др.).

Стеклом называют также отдельные группы изделий из стекла, например строительное стекло, тарное стекло, химико-лабораторное стекло и др. Изделия из стекла могут быть прозрачными или непрозрачными, бесцветными или окрашенными, люминесцировать под воздействием, например, ультрафиолетового и g-излучения, пропускать или поглощать ультрафиолетовые лучи и т.д. Наибольшее распространение получило неорганическое стекло, характеризующееся высокими механическими тепловыми, химическими и др. свойствами. Основная масса неорганического стекла выпускается для строительства (главным образом листовое) и для изготовления тары. Эти виды продукции получают преимущественно из стёкол на основе двуокиси кремния (силикатное стекло); применение находят также и др. кислородные (оксидные) стекла, в состав которых входят окислы фосфора, алюминия, бора и т.д. К бескислородным неорганическим стеклам относятся стекла на основе халькогенидов мышьяка (As2S3), сурьмы (Sb2Se3) и т.д., галогенидов бериллия (BeFz) и т.д. .
По назначению различают: строительное стекло (оконное, узорчатое, стеклянные блоки и т.д.), тарное стекло, стекло техническое (кварцевое стекло, светотехническое стекло, стеклянное волокно и т.д.), сортовое стекло и т.д. Вырабатываются стекла, защищающие от ионизирующих излучений, стекла индикаторов проникающей радиации, фотохромные стекла с переменным светопропусканием, стекло, применяемое в качестве лазерных материалов, увиолевое стекло, пеностекло, растворимое стекло и др. Растворимое стекло, содержащее около 75% 3102, 24% Na2O и др. компоненты, образует с водой клейкую жидкость (жидкое стекло); используется как уплотняющее средство, например для изготовления силикатных красок, конторского клея, в качестве диспергаторов и моющих средств, для пропитки тканей, бумаги и пр. Химический состав некоторых видов стекла приведён в таблице.
Физико-химические свойства стекла. Свойства стекла зависят от сочетания входящих в их состав компонентов. Наиболее характерное свойство стекла — прозрачность (светопрозрачность оконного стекла 83—90%, а оптического стекла — до 99,95%). Стекло типично хрупкое тело, весьма чувствительное к механическим воздействиям, особенно ударным, однако сопротивление сжатию у стекла такое же, как у чугуна.
Для повышения прочности стекла подвергают упрочнению (закалка, ионный обмен, при котором на поверхности стекла происходит замена ионов, например натрия, на ионы лития или калия, химическая и термохимическая обработка и др.), что ослабляет действие поверхностных микротрещин (трещины Гриффитса), возникающих на поверхности стекла в результате воздействия окружающей среды (температура, влажность и пр.) и являющихся концентраторами напряжений, и позволяет повысить прочность стекла в 4—50 раз. Обычно для устранения влияния микротрещин применяют стравливание или сжатие поверхностного слоя. При стравливании дефектный слой растворяется плавиковой кислотой, а на обнажившийся бездефектный слой наносится защитная плёнка, например из полимеров. При закалке поверхностный слой сжимается, что препятствует раскрытию трещин.
Плотность стекла 2200—8000 кг/м3, твёрдость по минералогической шкале 4,5—7,5, микротвёрдость 4—10 Гн/м2, модуль упругости 50—85 Гн/м2. Предел прочности С. при сжатии равен 0,5—2 Гн/м2, при изгибе 30—90 Гн/м2, при ударном изгибе 1,5—2 Гн/м2. Теплоёмкость С. 0,3—1 кдж/кг -К, термостойкость 80°— 1000 °С, температурный коэффициент расширения (0,56—12) 109 1/К. Коэффициент теплопроводности стекла мало зависит от его химического состава и равен 0,7—1,3 вт/(м*К). Коэффициент преломления 1,4—2,2, электрическая проводимость 10-8—10-18 Cм, диэлектрическая проницаемость 3,8—16.
Технология стекла. Производство стекла состоит из следующих процессов: подготовки сырьевых компонентов, получения шихты, варки стекла, охлаждения стекломассы, формования изделий, их отжига и обработки (термической, химической, механической). К главным компонентам относят стеклообразующие вещества (природные, например SiO2, и искусственные, например Na2CO3), содержащие основные (щелочные и щёлочноземельные) и кислотные окислы. Главный компонент большинства промышленных стекл — кремнезём (кремния двуокись), содержание которого в стекле составляет от 40 до 80% (по массе), а в кварцевых и кварцоидных от 96 до 100%. В стекловарении обычно в качестве источника кремнезёма используют кварцевые стекольные пески, которые в случае необходимости обогащают. Сырьём, содержащим борный ангидрид, являются борная кислота, бура и др. Глинозём вводится с полевыми шпатами, нефелином и т.д.; щелочные окислы — с кальцинированной содой и поташом; щёлочноземельные окислы — с мелом, доломитом и т.п. Вспомогательные компоненты — соединения, придающие то или иное свойство, например окраску, ускоряющие процесс варки и т.д. Например, соединения марганца, кобальта, хрома, никеля используются как красители, церия, неодима, празеодима, мышьяка, сурьмы — как обесцвечиватели и окислители, фтора, фосфора, олова, циркония — как глушители (вещества, вызывающие интенсивное светорассеяние); в качестве осветлителей применяют хлорид натрия, сульфат и нитрат аммония и др. Все компоненты перед варкой просеиваются, сушатся, при необходимости измельчаются, смешиваются до полностью однородной порошкообразной шихты, которая подаётся в стекловаренную печь.
Процесс стекловарения условно разделяют на несколько стадий: силикатообразование, стеклообразование, осветление, гомогенизацию и охлаждение («студку»).
При нагревании шихты вначале испаряется гигроскопическая и химически связанная вода. На стадии силикатообразования происходит термическое разложение компонентов, реакции в твёрдой и жидкой фазе с образованием силикатов, которые вначале представляют собой спекшийся конгломерат, включающий и не вступившие в реакцию компоненты. По мере повышения температуры отдельные силикаты плавятся и, растворяясь друг в друге, образуют непрозрачный расплав, содержащий значительное количество газов и частицы компонентов шихты. Стадия силикатообразования завершается при 1100—1200 °С.
На стадии стеклообразования растворяются остатки шихты и удаляется пена — расплав становится прозрачным; стадия совмещается с конечным этапом силикатообразования и протекает при температуре 1150—1200 °С. Собственно стеклообразованием называют процесс растворения остаточных зёрен кварца в силикатном расплаве, в результате чего образуется относительно однородная стекломасса. В обычных силикатных стеклах содержится около 25% кремнезёма, химически не связанного в силикаты (только такое стекло оказывается пригодным по своей химической стойкости для практического использования). Стеклообразование протекает значительно медленнее, чем силикатообразование, оно составляет около 90% от времени, затраченного на провар шихты и около 30% от общей длительности стекловарения.
Обычная стекольная шихта содержит около 18% химически связанных газов (СО2, SO2, O2 и др.). В процессе провара шихты эти газы в основном удаляются, однако часть их остаётся в стекломассе, образуя крупные и мелкие пузыри.
На стадии осветления при длительной выдержке при температуре 1500—1600 °С уменьшается степень пересыщения стекломассы газами, в результате чего пузырьки больших размеров поднимаются на поверхность стекломассы, а малые растворяются в ней. Для ускорения осветления в шихту вводят осветлители, снижающие поверхностное натяжение стекломассы; стекломасса перемешивается специальными огнеупорными мешалками или через неё пропускают сжатый воздух или др. газ.
Одновременно с осветлением идёт гомогенизация — усреднение стекломассы по составу. Неоднородность стекломассы обычно образуется в результате плохого перемешивания компонентов шихты, высокой вязкости расплава, замедленности диффузионных процессов. Гомогенизации способствуют выделяющиеся из стекломассы газовые пузыри, которые перемешивают неоднородные микроучастки и облегчают взаимную диффузию, выравнивая концентрацию расплава. Наиболее интенсивно гомогенизация осуществляется при механическом перемешивании (наибольшее распространение эта операция получила в производстве оптического стекло).
Последняя стадия стекловарения — охлаждение стекломассы («студка») до вязкости, необходимой для формования, что соответствует температуре 700—1000 °С. Главное требование при «студке» — непрерывное медленное снижение температуры без изменения состава и давления газовой среды; при нарушении установившегося равновесия газов образуется т. н. вторичная мошка (мелкие пузыри).
Процесс получения некоторых стекл отличается специфическими особенностями. Например, плавка оптического кварцевого стекла в электрических стекловаренных печах ведётся сначала в вакууме, а в конце плавки — в атмосфере инертных газов под давлением. Производство каждого типа стекла определяется технологической нормалью.
Формование изделий из стекломассы осуществляется механическим способом (прокаткой, прессованием, прессовыдуванием, выдуванием и т.д.) на стеклоформующих машинах. После формования изделия подвергают термической обработке (отжигу).
В результате отжига (выдержки изделий при температуре, близкой к температуре размягчения стекла) и последующего медленного охлаждения происходит релаксация напряжений, появляющихся в стекле при быстром охлаждении. В результате т. н. закалки в стекле возникают остаточные напряжения, обеспечивающие его повышенную механическую прочность, термостойкость и специфический (безопасный) характер разрушения в сравнении с обычным стеклом (закалённые стекла применяют для остекления автомобилей, вагонов и т.п. целей).
Историческая справка. В природе существует природное стекло — перлит, обсидиан (см. Вулканическое стекло).
Появление искусственного стекла обычно связывают с развитием гончарства. При обжиге на изделие из глины могла попасть смесь соды и песка, в результате чего на поверхности изделия образовалась стекловидная плёнка-глазурь. Производство стекла началось в 4-м тыс. до н. э. (Древний Египет, Передняя Азия).
Первоначально получались непрозрачные стекла, с помощью которых имитировали поделочные камни (малахит, бирюзу и т.д.). Постепенно состав стекла менялся, количество окислов щелочных металлов с 30% (по массе) уменьшилось до 20%; в стекла вводились окислы свинца и олова; для окрашивания стали добавлять соединения марганца и кобальта. Во 2-м тыс. до н. э. в Египте стекло варили в глиняных горшочках — тиглях ёмкостью около 0,25 л.
Коренные изменения в технологии стеклоделия произошли на рубеже нашей эры, когда были решены две важнейшие проблемы стеклоделия — изготовление прозрачного бесцветного стекла и формование изделий выдуванием. Получение прозрачного стекла стало возможным в результате усовершенствования стекловаренных печей, что позволило повысить температуру варки и надёжно воспроизводить условия хорошего осветления стекломассы. Стеклодувная трубка, изобретённая в 1 в. до н. э., оказалась универсальным инструментом, с помощью которого стало возможным создавать простые, доступные всем предметы обихода, например посуду.
Первым научным трудом по стеклоделию считают вышедшую во Флоренции в 1612 книгу монаха Антонио Нери, в которой были даны указания об использовании окислов свинца, бора и мышьяка для осветления стекла, приведены составы цветных стекл. Во 2-й половине 17 в. нем. алхимик И. Кункель опубликовал сочинение «Экспериментальное искусство стеклоделия», он же изобрёл способ получения золотого рубина. В 1615 в Англии стали применять для нагрева стеклоплавильных печей уголь, что повысило температуру в печи. С начала 17 в. во Франции был предложен способ отливки зеркальных стекл на медных плитах, с последующей прокаткой; в то же время был открыт метод травления стекла смесью плавикового шпата и серной кислоты, освоено производство оконного и оптического стекла. Существенную роль в создании основ стеклоделия сыграли русские учёные: М. В. Ломоносов, Э. Г. Лаксман, С. П. Петухов, А. К. Чугунов, Д. И. Менделеев, В. Е. Тищенко.
До конца 19 в. в стеклоделии преобладал ручной труд, и только со 2-й половины 20 в. производство всех видов массового стекла (оконное, тарное и др.) было механизировано и автоматизировано, а ручные методы сохранились лишь при изготовлении художественного стекла и некоторых сортовых изделий.
Художественное стекло включает в себя витражи, смальтовые мозаики, сосуды художественные, архитектурные детали, декоративные композиции, скульптуру (обычно малых форм), светильники, искусственные драгоценности (бижутерия). В древнем мире производство стекла было особенно развито в Египте (эпоха Птолемеев, 4—1 вв. до н. э.), Сирии, Финикии, Китае. Как правило, в искусстве древнего мира изделия из стекла (небольшие вазочки, чаши, блюдца, бусы, серьги, амулеты, печати) изготовлялись посредством прессования в открытых глиняных формах или путём навивания стекломассы на палочку; такое стекло обычно было непрозрачным, а по цвету — зелёным, голубым, бирюзовым. Изобретение способа свободного выдувания стекла с помощью трубки, а также повышение температуры его варки дали эллинистическим и древнеримским мастерам возможность получать тонкостенные (иногда двухслойные) более прозрачные и однородные по массе изделия относительно крупных размеров.
С 6 в. центры художественного стеклоделия сосредоточились в Византии, где процветала выделка цветного непрозрачного стекла для посуды и смальт. В средневековой Западной Европе эпохи готики важнейшей областью искусства, стимулировавшей развитие вкуса к художественному стеклу, было изготовление витражей. Среди средневековых стран мусульманского Востока в 12—14 вв. производством стеклянных изделий с эмалевыми росписями славилась Сирия.
В 15—16 вв. ведущее значение в декоративно-прикладном искусстве Европы приобрело венецианское стекло. С изобретением в 17 в. более твёрдого кальциевого стекла и развитием техники гравировки центр художественного стеклоделия переместился в Чехию. С 1770-х гг. (первоначально в Англии) стало широко применяться стекло, полученное на основе окиси свинца (хрусталь или флинт-гласе), главным способом обработки которого явилось так называемое алмазное гранение, выявляющее способность хрусталя преломлять или отражать свет. Начиная с 18 в. интенсивно развивается и производство искусственных драгоценных камней. На рубеже 19—20 вв. к художественному стеклу обращаются специалисты по декоративно-прикладному искусству (Э. Галле, О. Даум, Э. Руссо во Франции, И. Хофман в Австрии, Л. К. Тиффани в США); в их изделиях, нередко отличающихся стремлением к ассоциативному сопоставлению художественных и природных, преимущественно растительных форм, преобладали черты стиля «модерн». Для современного художественного стекла характерно необычайное разнообразие техник и стилевых тенденций; увлечение изысканными, подчёркнуто фантастическим конфигурациями и усложнённо-орнаментальной обработкой поверхностей сосуществует с тяготением к аскетически-строгим решениям, выделяющим в качестве важнейших элементов образа простоту форм и прозрачность неукрашенного стекла.
В Древней Руси стеклоделие получило значительное развитие уже в домонгольский период (выделка украшений, сосудов, смальты для мозаик). Прерванное татаро-монгольским нашествием, производство художественного стекла возродилось в 17 в., когда в 1635 году был основан первый в России стекольный завод. Огромный вклад в производство цветного стекла (главным образом для мозаик, бижутерии и архитектурной облицовки) внёс М. В. Ломоносов, создавший в 1753 Усть-Рудицкую фабрику. Важнейшую роль в развитии русского стеклоделия сыграл Императорский хрустальный и стекольный завод в Петербурге (заложенный Петром I в начале 18 в. под Москвой и к середине 18 в. вместе с Ямбургскими заводами переведённый в Петербург). В 18 в. были основаны также Гусевской хрустальный завод и Дятьковский хрустальный завод. Для русского искусства 18 в. было характерно гутное стекло, изготовлявшееся путём свободного выдувания и лепки на небольших купеческих заводах (изделия из такого стекла, часто тёмные по тону, расписывались эмалевыми красками), и прозрачное светлое стекло, декорируемое в основном с помощью гравировки и выпускавшееся Императорским заводом и наиболее крупными частными предприятиями; на этих же заводах с середины 18 в. производилось много изделий из молочного стекла. По проектам крупнейших зодчих (А. Н. Воронихина, Ч. Камерона, М. Ф. Казакова, Н. А. Львова, К. И. Росси, Т. де Томона) на Императорском заводе выполнялись (в стиле классицизма) детали осветительной арматуры, мебели и архитектурного декора. С конца 18 в. здесь же были освоены варка свинцового хрусталя и алмазное гранение, для которого в начале 19 в. типичен особый рисунок, подражающий бриллиантовой огранке («русский камень»). К середине 19 в. в русском художественном стекле возникает увлечение гигантскими размерами изделий (сборные хрустальные канделябры, вазы, детали архитектурного декора); в конце 19 в. развивается имитационное направление (подражание камню, фарфору, дереву и металлу), распространяются влияния стиля «модерн».
В СССР интенсивное производство художественного стекла начинается с конца 1930-х гг. Ведущую роль в развитии советского художественного стеклоделия сыграла скульптор В. И. Мухина (см. Ленинградский завод художественного стекла). В 50—60-е гг. художественные лаборатории появились почти на всех крупных советских заводах сортовой посуды. Среди видных мастеров декоративно-прикладного искусства, работавших на заводах СССР в 60—70-е гг., — Г. А. Антонова, А. А. Аствацатурьян, А. Г. Балабин, С. М. Бескинская, М.-Т. В. Грабарь, О. И. Гущин, Ю. В. Жульев, А. Д. Зельдич, Х. Кырге, Л. М. Митяева, В. С. Муратов, В. С. Мурахвер, М. А. Павловский, С. Раудвеэ, Е. И. Рогов, Б. А. Смирнов, В. А. Филатов. В. Я. Шевченко, Л. О. Юрген, Е. В. Яновская. В советском художественном стекле выделяется несколько направлений: ленинградская школа (бесцветный и цветной хрусталь строгих форм с алмазной гранью), владимирское стекло (использование традиций русского гутного стекла), украинское стекло (традиции украинского гутного стекла, яркая полихромия), прибалтийская школа (слабо окрашенное прессованное стекло с тонкой гравировкой). В 60—70-е гг. плодотворно развивается витраж, широкое распространение получают создание хрустальных фонтанов и различных декоративных установок из стекла и металла, изготовление изделий (в т. ч. гобеленов из стеклоткани) для украшения интерьеров.

Top
Rambler's Top100 Яндекс.Метрика
We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…